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Abstract
Software-defined networking (SDN) has revolutionized network management by enabling dynamic control and opti-

mization of network resources. A key challenge in SDN deployment is the strategic placement and assignment of con-

trollers, which significantly affects network performance in terms of energy consumption, latency, and load balancing. This

research addresses the controller placement problem by proposing a two-step method that combines enhanced rein-

forcement learning with an improved metaheuristic algorithm, termed Bedbug-GLA. In the first step, an irregular cellular

learning automata model is developed to determine the optimal number of controllers required. In the second step, the

Bedbug metaheuristic algorithm is employed to efficiently assign controllers to switches. Simulation results demonstrate

that Bedbug-GLA achieves up to an 18% improvement in maximum controller load, a 69% reduction in congested

controller overload, and a 20% decrease in energy consumption compared to state-of-the-art metaheuristic approaches, as

evaluated on standard network topologies derived from real-world datasets.

Keywords Bedbug metaheuristic algorithm � Controller placement problem � Energy consumption � Software-defined
network

1 Introduction

The software-defined networking (SDN) is a new promis-

ing technology that has provoked interest in academic and

industrial research [1]. SDNs and conventional networks

differ in the way they operate. SDNs decouple the data

plane, which handles the forwarding of network traffic,

from the control plane, which manages network policies

and configurations [2]. All control functions are performed

by a specific entity named the controller [3]. Controllers

are the brain of SDNs, and the software-based controller

logically centralizes the network intelligence [4]. Con-

trollers are the operating system of SDNs. They oversee

network management by offering services that enable user

applications to communicate with the network’s hardware

and connect with other devices within the network [5].

While controllers maintain an overview of the entire net-

work with the help of information gathered on network

status, they also set the rules of the flow table of switches

[6]. The network switches, those known as nodes in SDNs

[7], are solely responsible for forwarding the data, whereas
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controllers specify the routing of network packets among

the switches [8]. The data plane switches forward flows

based on the switch flow table [9]. As soon as a new flow

arrives that is unknown to the switch, the switch sends a

flow set-up request to the controller. The controller by

receiving flow set-up requests from switches, responds by

sending rules to be installed in the switch’s flow table [10].

From an architecture perspective, the control plane may

be composed of either one controller, in which case it is

called the single-controller architecture, or multiple con-

trollers, in which case it is called the multi-controller

architecture. The single-controller architecture suffers the

single failure point, so the multi-controller architecture is

usually recommended. The multi-controller architecture is

itself divided into flat architecture and hierarchical archi-

tecture. In the former, all controllers are placed in the same

layer, but in the latter, the controllers are placed in different

layers [11].

The placement and quantity of controllers in static net-

works are predetermined and remain constant. However, in

dynamic networks, controllers must adjust rapidly to

changes in network traffic, with new controllers being

activated as network load increases and some controllers

being deactivated as load decreases [12]. The placement of

controllers is critical as it can affect the network’s perfor-

mance, reliability, availability, and ability to handle traffic

spikes. The Controller Placement Problem (CPP) refers to

determining the appropriate number of controllers (NC) to

deploy in the network, identifying the optimal locations for

their installation, and assigning switches to these con-

trollers in order to meet specific performance requirements

such as delay, energy usage [13], and load balancing [14].

Every switch in the SDN must be controlled by at least

one controller. Assigning appropriate switches to a specific

controller is called controller assignment [15], which is an

important issue in the CPP. The optimal solution for CPP

depends on various factors [16], such as propagation delay

[17], latency [18], load balancing [19], bandwidth, energy

usage [20], security issues [2], and data transfer rate. These

factors are often conflicting in nature, including reliability,

load balancing, latency, and energy efficiency [21]. Finding

an appropriate trade-off among these metrics is essential

for effective controller placement, as a single optimal or

random placement may not be feasible [22].

Due to environmental and economic concerns, grid

energy usage and heat and carbon dioxide produced for

energy production cannot be ignored. Hence, it is crucial to

design an energy-aware SDN topology [23].

The significance of delay in controller placement within

SDNs cannot be ignored, as it directly impacts the net-

work’s responsiveness, efficiency, and overall perfor-

mance. A well-optimized controller placement strategy

plays a pivotal role in minimizing communication delays

between network components, ensuring timely decision-

making, and enhancing the network’s reliability. By

strategically situating controllers closer to critical network

nodes, delays can be significantly reduced, leading to

improved network agility and robustness [24].

Another important parameter in SDNs is load balancing

[25]. Load balancing strategies become important when the

network is congested. If switches are assigned to the closest

controller, congestion will occur and some controllers will

be overloaded while others are underutilized. An overload

controller reduces responsiveness and degrades perfor-

mance as flows experience an unexpected delay. The

consequences of overloading the controllers and creating

an imbalance in the utilization of network resources

include network congestion and packet loss [26].

The CPP in SDNs is a critical optimization challenge

that aims to minimize propagation latency and ensure

efficient network performance. Initially introduced to

address latency [24], the CPP has evolved to incorporate

multiple objectives, reflecting the complexity of modern

network deployments. This problem is known to be NP-

hard, and its complexity increases significantly when

multiple objectives are involved, demanding substantial

computational resources to find efficient solutions [27].

Recent trends in SDN emphasize the need for efficient

and scalable networks, which are challenged by factors

such as increasing latency, load balancing issues, and

energy consumption [28]. The shift towards multi-objec-

tive optimization is crucial as it addresses the diverse

requirements of modern SDNs, offering a more holistic

approach to solving the CPP [29]. However, comprehen-

sive solutions that simultaneously consider all critical

parameters remain scarce, underscoring the need for

innovative multi-objective approaches that can effectively

navigate the trade-offs between competing objectives in

SDN deployments.

This paper addresses the multi-objective CPP using

reinforcement learning and metaheuristic algorithms,

which are well-suited for complex optimization problems.

A hybrid approach is proposed, integrating the Bedbug

Meta-Heuristic Algorithm (BMHA) [30], Genetic Algo-

rithm, and reinforcement algorithm, known as Bedbug-

GLA. Bedbug-GLA employs Irregular Cellular Learning

Automata (ICLA) [31], enhanced by integrating a rein-

forcement signal derived from the Genetic Algorithm

(GA), resulting in Developed ICLA (DCLA), which is used

to determine the necessary number of controllers. Addi-

tionally, Bedbug-GLA utilizes the Bedbug Metaheuristic

Algorithm (BMHA) and further refines it into Developed

BMHA (DBMHA) by incorporating genetic operators to

enhance both the speed and accuracy of the algorithm. The

DBMHA is then applied for controller assignment in SDN.

Theoretically, Bedbug-GLA offers superior adaptability
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and flexibility compared to traditional methods, such as sub

modularity-based approaches, which are effective in IoT

networks but may lack adaptability in broader scenarios.

Unlike ILP-based dynamic placement methods, which can

be computationally intensive, Bedbug-GLA provides a

lightweight and adaptive solution. The proposed method

stands out due to its comprehensive approach, addressing

three critical parameters: delay, energy consumption, and

load balancing. The advancements made in ICLA and

BMHA significantly enhance the relevance of this study.

Furthermore, Bedbug-GLA is versatile and can be imple-

mented across various multi-controller SDN networks,

offering a flexible and efficient framework for optimizing

controller placement. The significant contributions of the

paper are as follows:

• Bedbug-GLA develops ICLA by GA and presents new

developed ICLA. ICLA is the reinforcement learning

algorithm that consists of a grid or network of

interconnected cells (automata). Each cell possesses a

set of possible actions it can take based on its current

state and external stimuli. When a cell interacts with its

environment, it receives feedback based on its actions.

This feedback guides the cell in adapting its behavior

by adjusting its state or action selection probabilities.

However, the learning time and adaptation of ICLA

within specific applications and problem domains are

crucial factors. DCLA employs the GA to accelerate the

learning process.

• Bedbug-GLA Uses the proposed DCLA to find appro-

priate NC. Bedbug-GLA employs DCLA to identify the

most suitable NCs tailored to the network’s size,

structure, traffic patterns, and controller workloads,

aiming to enhance the Quality of service (QoS) in SDN.

• Bedbug-GLA enhances the BMHA to accelerate the

convergence rate and prevent local optima entrapment.

While metaheuristic algorithms are proficient at quickly

identifying near-optimal solutions, they often face

challenges such as getting stuck in local optima and

experiencing premature convergence. To address these

issues, Bedbug-GLA introduces DBMHA, a hybrid

approach that combines BMHA with genetic operators

to enhance convergence speed and avoid local optima.

Additionally, DBMHA incorporates chaotic theory for

generating the initial population, which improves

population diversity.

• Bedbug-GLA employs the proposed DBMHA for

controller assignment, designed to enhance energy

efficiency, manage controller loads, and minimize

propagation latency.

• Experimental simulation is applied on three different

real-world topologies to prove Bedbug-GLA.

The rest of the paper is written as follows: An overview

of the works related to CPP is presented in Sect. 2. Sec-

tion 3 is dedicated to the modeling of system and formu-

lation of the problem, as well as an explanation of the

Bedbug-GLA method proposed for solving the CPP. Sec-

tion 4 evaluates Bedbug-GLA. The final section is devoted

to conclusions and suggestions for future works.

2 Related works

The CPP in SDNs has been addressed through both single-

objective and multi-objective optimization approaches

[32]. Single-objective methods typically utilize algorithms

to minimize or maximize one objective, often focusing on

latency reduction using metaheuristic techniques. In con-

trast, multi-objective approaches employ algorithms that

consider two or more objectives, such as latency, reliabil-

ity, load balancing, and energy consumption. These

methods may also incorporate machine learning or meta-

heuristic techniques. The evolution of CPP from focusing

solely on latency minimization to incorporating multiple

objectives reflects the growing complexity of modern net-

work deployments, where efficiency, reliability, and scal-

ability are increasingly important.

2.1 Single-objective approaches

The CPP has been normalized as a single-objective opti-

mization problem in some research. Heller et al. [24],

introduced CPP in 2012. They studied it as a K-median or

K-center problem and their aim was propagation latency.

They evaluated all potential locations for the controller

placement with a comprehensive approach. In [28], CPP

was investigated to reduce energy usage. The authors

modeled it as a binary integer program (BIP). The network

energy usage was reduced due to the delay of the control

paths and the load of the controllers in it. Also, a GA was

designed to find a suboptimal solution for an extensive

network. However, they didn’t find NC in the findings.

Wang et al. [33], developed an optimized K-means algo-

rithm for CPP to decrease SDN latency. Liu et al. [34],

presented a form of PSO algorithm for CPP while con-

sidering the latency and load balance of the controllers. Li

et al. [35], designed a different method based on PSO by

dynamic parameters. They improved the switch to con-

troller average transmission latency. Authors in [36], pro-

vided guidelines for network operators based on the SRGM

framework to manage the NC and increase service relia-

bility and quality in SDN. Ateya et al. [32], developed a

dynamic optimization algorithm based on the Chaotic Salp

Swarm Algorithm (CSSA). The CSSA dynamically eval-

uates the optimum NC and the optimum controller
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assignments, which minimizes the deployment cost and

latency. Authors in [37], show that distributing the tasks

between homogeneous cores in controllers can reduce the

frequency of operations and the overall energy usage. In

[38], a clustering strategy was used for the fair allocation of

switches. The authors used the analytical network process

(ANP) and a multi-criterion decision-making (MCDM)

plan for network clustering and CA. Their goal was to

improve end-to-end delay and controller-to-controller

latency. But, they did not consider load balancing. Babbar

and Rani [39], introduced a capacity-based switch-splitting

technique to partition the network into sub-networks, each

managed by a strategically positioned controller. This

method employs a personalized and adaptive learning

approach alongside density-based splitting to effectively

segment the network. Each sub-network is assigned a

controller, optimizing both the placement and the NCs

needed for efficient network management. However, this

approach also increases complexity. Also, none of these

works didn’t consider energy usage parameters in solving

the CPP.

Single-objective approaches to the CPP focus on opti-

mizing specific metrics, such as latency or energy effi-

ciency. While methods like K-median, binary integer

programming, K-means, and PSO have achieved targeted

improvements, they often neglect critical factors like load

balancing, network capacity, or energy usage. These limi-

tations highlight the narrow focus of single-objective

methods, making them less suitable for addressing the

complex demands of dynamic network environments.

2.2 Multi-objectives approaches

The approaches discussed above consider a single criterion

for solving the CPP. However, multiple parameters must be

considered to solve the CPP in the real world, and some

works solve the problem by multi-objective algorithms.

In [40], the authors proposed an analytical model con-

sidering propagation latency. They used two models, Sin-

gle Data Ownership (SDO) and Multiple Data Ownership

(MDO), to demonstrate compatibility. They proposed two

models for CPP that would reduce the response time in

SDO and MDO models. They also presented an evolu-

tionary algorithm to find Pareto’s optimal locations in

propagation latency. Still, they did not consider energy

usage and NC. Ramya et al. [41], pursued three goals:

identifying the required NC, locating the controllers opti-

mally, and ensuring the network’s reliability. They deter-

mined the NC using a graph theory approach. The Tabu-

Pareto Integrated Search (PITS) algorithm was used to

identify the optimal position of the controllers. A heuristic

approach and controller migration managed link failure and

controller load imbalance. Killi et al. [42], proposed a

scalable algorithm in large-scale networks to improve the

controller’s load balancing. To increase the load balance of

the controllers, this algorithm uses the fractional distribu-

tion of switches among controllers in the form of poly-

stable matching. The remaining switches are assigned to

the closest controllers, taking into account the switches’

latency and the controllers’ load. The algorithm also

migrates some switches from their controllers to reduce

propagation latency whereas they do not care about energy

usage. Kazemian and Mirabi [43], employed Ant Lion

Optimizer (ALO) to develop an effective solution. They

took into account propagation latency and link reliability

by utilizing disjoint paths between switches and con-

trollers. Additionally, they identified the appropriate NC

and demonstrated strong performance in terms of latency;

however, they did not address the energy parameter. Guo

et al. [15], formulated and solved the CPP for low-Earth

orbit (LEO) satellite networks using static placement with

the dynamic assignment (SPDA) method. The method has

two steps. It first combines SDN controllers in some fixed

satellites by formulating a mixed integer programming

(MIP). Then, it defines dynamic controller assignment to

improve the latency and load of the controllers. However, it

does not consider energy usage. Naseri et al. [44], propose

a solution to the CPP by considering both setup costs and

latency of control packets. They develop several models,

including Cost Model, Cost & Controller-to-Switch

Latency Model (CCSLM), Cost & Controller-to-Controller

Latency Model (CCCLM), Cost & Controller-to-Controller

Hops Model (CCCHM), and Cost & Controller-to-Switch

Hops Model (CCSHM), to balance parameters like con-

troller number, latency, and hops. The solution uses a

binary linear programming model, solved with CPLEX or

MATLAB, employing exact optimization techniques. This

multi-objective approach optimizes both cost and perfor-

mance metrics simultaneously. However, solving NP-Hard

problems like CPP exactly can be computationally chal-

lenging. To enhance delay and load balancing in SDNs,

Abedini Bagha et al. [25] first partitioned the network using

the Fuzzy C-Means (FCM) clustering algorithm. They then

identified optimal locations for controllers through the

Seagull Optimization Algorithm (SOA). In another study

[23], they proposed ELA-RCP to improve energy effi-

ciency, load balancing, and reliability in SDNs. They

determined the appropriate NCs using cellular learning

automata and subsequently identified optimal controller

locations through an improved version of SOA. Addition-

ally, they monitored the load on the controllers and

enhanced network load balancing and reliability using a

heuristic algorithm. However, this approach did not lead to

any improvements in delay. Hemagowri et al. [45],

developed a new method called Demming Regressive

Multi-objectives Dragonfly Optimized Controller
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Placement (DRMDOCP) to determine the optimal NC in

different network topologies, minimize average latency,

and increase the reliability and throughput of SDN by

solving CPP. Li et al. [46] developed a policy for controller

placement and synchronization aimed at minimizing net-

work costs while enhancing overall network performance

through deep reinforcement learning (DRL). Their

approach seeks to balance multiple objectives, including

reducing network expenses, improving synchronization

among distributed controllers, and ensuring efficient com-

munication with network devices. However, the study did

not determine the optimal NCs. Additionally, DRL may

present challenges such as high complexity and computa-

tional costs, difficulties in generalizing to new environ-

ments, scalability limitations due to resource constraints,

and extensive data requirements for training. Singh et al.

[11] addressed the Challenge of the CPP, taking into

account both communication latency and reliable data

transmission. Their main objective was to reduce the

overall average latency of the network by implementing a

robust network model capable of functioning seamlessly

even in the event of failure of n-1 controllers out of n

deployed. Employing PSO, they successfully optimized

controller allocation, thereby reducing network latency and

improving switch assignments within this dynamic system.

Through experiments on the Internet2 OS3E architecture, it

was observed that three controllers maintained high relia-

bility and low latency performance even under controller

failures. The results demonstrate the effectiveness of the

proposed methodology, paving the way for exploring

additional multi-objective optimization techniques to

address reliability concerns within the CPP more effec-

tively in future research. But it didn’t determine the NC.

However, none of these works don’t consider energy

parameter in problem solving. Khojand et al. [12], pro-

posed GEWO for the Controller Placement Problem (CPP),

combining game theory with a hybrid optimization algo-

rithm that integrates the Golden Eagle Optimization (GEO)

and the Grey Wolf Optimizer (GWO) to optimize con-

troller placement for efficient network management.

GEWO improves load balancing, end-to-end delay, and

energy consumption. However, it has added complexity

from game theory, potential limitations in scalability for

large networks, and a dependency on algorithm parameters

that require tuning for optimal performance.

Multi-objective approaches for solving the CPP address

the need for balancing multiple performance metrics, such

as latency, energy consumption, and load balancing, to

achieve optimal network management. Various studies

have proposed innovative algorithms, including evolu-

tionary techniques and hybrid optimization methods, to

enhance controller placement while considering trade-offs

among conflicting objectives. However, many of these

approaches often neglect critical parameters like energy

usage or face challenges related to algorithm complexity

and computational demands. Overall, while multi-objective

methods provide a more holistic view of network opti-

mization, they must also address these limitations to

improve their applicability in real-world scenarios.

Table 1 provides a comprehensive comparison of

methodologies, evaluation parameters, and the advantages

and disadvantages of each method. As shown in Table 1,

research on the CPP in SDN can be broadly categorized

into single-objective and multi-objective approaches. Sin-

gle-objective methods focus on optimizing specific metrics

like latency or energy, offering efficient solutions for par-

ticular network conditions but potentially neglecting other

critical performance aspects. In contrast, multi-objective

approaches, such as GEWO, DRMDOCP, and CCSHM,

aim to balance multiple conflicting objectives simultane-

ously, including network delay, energy, load balancing,

and cost. These methods provide a more comprehensive

optimization by considering trade-offs between different

performance metrics, offering robust and adaptable solu-

tions for complex network environments. However, they

often require more complex algorithms and computational

resources due to the increased dimensionality of the opti-

mization problem. The choice between single-objective

and multi-objective methods depends on the specific net-

work requirements and constraints.

Notably, most previous studies have overlooked the

importance of incorporating Number of controllers (NC)

into their problem-solving approaches and have often

neglected the energy parameter. Despite these advance-

ments, comprehensive solutions that simultaneously con-

sider all critical parameters remain scarce, highlighting the

need for innovative multi-objective approaches that can

effectively navigate the trade-offs between competing

objectives in SDN deployments.

This work introduces Bedbug-GLA as a novel approach

to solving CPP. Bedbug-GLA calculates the proper number

of controllers using a new proposed DCLA and assigns

controllers to switches using a new proposed DBMHA,

while considering load balancing, propagation latency, and

energy usage parameters.

3 System modeling and proposed method

3.1 System modeling

To address the problem mathematically, the CPP is mod-

eled as a graph G = (V, E), where V denotes the set of

switches and E represents the links between these

switches. Specifically, V is defined as the set of

switches V = {s1, s2, …, sn}, with jVj = n indicating the
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Table 1 A summary of studies

References Object Type of method Method Performance

Metrics

Advantages Weakness/Gaps

[24] Single-

objective

Machine

learning

K-median -Latency - Improve latency - Not specifying the NC

- High memory and time

consumed

-Not caring about energy usage

-Consider only one object

(latency)

[28] Single-

objective

Metaheuristic GA - Energy -Improve energy usage - Not specifying the NC

-Consider only one object

(Energy)

[33] Single-

objective

Machine

learning

CNPA -Latency - Improve latency -Not caring about energy usage

-Consider only one object

(latency)

[34] Single-

objective

Metaheuristic NCPSO -Latency - Optimize Controller’s

load

-Not caring about energy usage

-Consider only one object (Load)

[32] Single-

objective

Metaheuristic CSSA -Latency -Improve latency

-Improve deployment

cost

- Not specifying the NC

-Not caring about energy usage

-Consider only one object

(latency)

[38] Single-

objective

Machine

learning

Clustering

MCDM

-Latency - Improve inter-

controller latency

- Improve end-to-end

delay

- Not specifying the NC

-Not caring about energy usage

-Not caring about load balancing

-Consider only one object

(latency)

[39] Single-

objective

Machine

learning and

heuristic

PUAL-DBSCP -Latency -Improve latency

-Determine the NC

-Not caring about energy usage

-Increased complexity

-Consider only one object

(latency)

[49] Multi-

objective

Metaheuristic POCO -Latency,

-Reliability,

-Load

balancing

- Improve latency

- Considered to be

failure cases

- Not specifying the NC

- No implementation in large and

real network

-Not caring about energy usage

[40] Multi-

objective

Metaheuristic Exa-Place -Latency,

-Reliability,

-Response

time

- Improve latency -Choosing the master controller of

a switch as the closet controller

-Not caring about energy usage

[41] Multi-

objective

Metaheuristic graph-theory &

PITS

-Latency,

-Reliability,

-Load

balancing

- Determine the NC

-Determine the optimal

location of controllers

-Not caring about energy usage

[42] Multi-

objective

Machine

learning

Poly-

stable matching

-Latency,

-Load

balancing

- Improve load

balancing

- Improve latency

-Determine the NC

-Improve scalability

-Not caring about energy usage

[43] Multi-

objective

Metaheuristic Multi-objective

antlion

algorithm

-Latency

- Reliability

-Determine the NC

- Assign switch to

controllers

- Improve latency

-Not caring about energy usage
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total number of switches. Additionally, C is the set of

controllers, expressed as C = {c1, c2, …, cm},

where m represents the number of controllers such

that jCj = m.

Based on the given assumptions, the quantity of con-

trollers does not exceed the quantity of switches (m B n).

Each controller is capable of handling requests up to its

specified capacity. Additionally, the total number of

requests managed by each controller at any given time

must remain within its processing limits. A request cannot

be split among different controllers for processing [10]. In

this model, each switch can be linked to only a single

controller. Dynamic models are used, with all network

traffic being dynamic and unpredictable [47].

Table 1 (continued)

References Object Type of method Method Performance

Metrics

Advantages Weakness/Gaps

[15] Multi-

objective

Heuristic SPDA -Load

balancing,

-Latency

- Improve propagation

latency

- Improve load

balancing

- Not specifying the NC

-Not caring about energy usage

[44] Multi-

objective

Exact

optimization

techniques

CCSHM -Cost

-Latency

-Determine the NC

-improve latency

-improve cost

-High computational complexity

[25] Multi-

objective

Metaheuristic SOA -Load

balancing,

-Delay

- Improve end-to-end

delay

- Improve load

balancing

- Not specifying the NC

-Not caring about energy usage

[23] Multi-

objective

Metaheuristic-

machine

learning

ELA-RCP -Reliability,

-Energy

-Load

balancing,

- Improve load

balancing

-Determine the NC

-Improve reliability

- Improve energy

consumption

- No improvement in delay

[45] Multi-

objective

Metaheuristic DRMDOCP -Latency,

-Throughput,

-Load

balancing,

-Packet drop

rate

- Improve load

balancing

- Improve latency

-Determine the NC

-Improve fault

tolerance

- Improve throughput

-Not caring about energy usage

[46] Multi-

objective

Machine

learning

DRL -Delay

-Energy

-Cost

-Improve Controller

utulization

- Improve latency

-Improve energy

consumption

- High complexity

- Scalability limitations

- Extensive data requirements

[11] Multi-

objective

Metaheuristic PSO -Latency

- Reliability

- Improve latency

- Assign switch to

controllers

-Improve reliability

- Not specifying the NC

-Not caring about energy usage

[12] Multi-

objective

Metaheuristic-

machine

learning

GEWO -Delay

-Energy

-Load

balancing,

- Determine the NC

- Assign switch to

controllers

-Improve energy

consumption

- Improve load

balancing

-High complexity

-Scalability
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ys;c ¼
1 if node s 2 V is controlled by the controller c 2 C

0Otherwise

�

ð1ÞXc

c¼1
ys;c ¼ 1 ð2Þ

Lc �Uc8c 2 C ð3Þ

Equation (1) shows whether or not node s [ V is con-

trolled by controller c [ C. Equation (2) mandates that

each switch is assigned to precisely one controller. ys,c has

a binary value and when switch s is assigned to controller

c, it will be equal to 1; otherwise, 0. Equation (3) shows

that the load of each controller (Lc) cannot exceed its

processing capacity, denoted by Uc for controller c.

Considering that the end-to-end delay, the energy usage,

and the controllers’ loads are the parameters of this

research, equations are defined to measure them.

3.1.1 End-to-end delay

In networking contexts, the end-to-end delay refers to the

average time it takes for data to travel from a specific

source to a specific destination. In SDN, this delay is

composed of several components.

The transmission delay is the time it takes to transmit

data over a link, which depends on the size of the data

packet and the bandwidth of the link. The propagation

latency is the time it takes for a signal to travel through a

medium, such as a fiber optic cable or wireless link,

determined by the distance between the source and desti-

nation and the speed of signal propagation in the medium.

Additionally, processing delay occurs when packets are

processed by network devices like routers or switches. In

SDN, this includes the time taken by the controller to

process flow rules and update switch configura-

tions. Queuing delay is the time packets spend waiting in

buffers at network devices before being transmitted, which

depends on network congestion and buffer size.

The mathematical formulation of the end-to-end delay,

as shown in Eq. (4), includes four components: transmis-

sion delay (dtrans), propagation latency (dprop), processing

delay (dproc), and queuing delay (dque).

dend2end ¼ dprop þ dtrans þ dproc þ dque ð4Þ

3.1.2 Propagation latency

There are two types of control paths: Switch-to-controller

path and inter-controller path. Latency in SDNs is a key

criterion that affects the performance of the systems. When

there are many controllers in the SDN, the frequent

exchange of packets between controllers, switches, and

controllers affects the end-to-end delay, as well as QoS.

The propagation latency is the sum of inter-controller

latency and switch-to-controller latency. In networking,

propagation latency is defined as the time it takes to

transmit data from one node to another, which can be

calculated by Eq. (5).

dprop ¼ C2Cavg þ S2Cavg ð5Þ

where d (s, c) is the shortest possible route from switch s to

controller c in the network. The shortest possible route

between switches and controllers is calculated using the

haversine distance [48]. Equation (6) shows the average

propagation latency of the controller set [10, 24]:

dpropavgðCÞ ¼
1

n

X
s

min
c2C

dðs; cÞ � ys;c ð6Þ

The average inter-controller latency in the SDN can be

determined by Eq. (7) [49]:

C2CAvg ¼
1

mðm� 1Þ
X

ci:cj2C
d ci:cj
� �

ð7Þ

As before said, d ci:cj
� �

is the shortest possible route

from controller ci to cj.

The calculation of the latency of switch-to-controller

propagation is necessary. Equation (8) presents the average

latency of switch-to-controller propagation in SDNs [48].

S2CAvg ¼
1

jSj
X
s

X
c

d s; cð Þ � ys;c ð8Þ

In this paper, the controllers’ queues are modeled as an

M/G/1 queue system. Whenever a new flow arrives at a

switch, the switch sends a flow adjustment request message

to its SDN controller. Investigations carried out in the field

of network traffic [50] have shown that the flow arrival

process in packet-switching networks follows the Poisson

distribution [51].

Controller c is responsible for S active switches. If the

flow arrival process from switch s (s 2 S) is a Poisson flow

with parameter ks independent of other switches and kc is
the rate of incoming messages to controller c, then the sum

of incoming packet messages from this controller’s

assigned switches is kc with Poisson distribution in Eq. (9).

kc ¼
X
s2S

ks � ys;c ð9Þ

lc is the service rate and qc is the traffic intensity of

messages received in controller c, which are calculated by

Eq. (10).

qc ¼
kc
lc

� �
� ys;c ð10Þ
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The processing time of the input flows in the controller

corresponds to the normal distribution with the position

parameter lc/1 and the scale parameter rc. The average

queue length of the messages received in the controller can

be calculated from Eq. (11) where Qlc shows the queue

length of controller c. Also, the average waiting time of

requests in the controller is calculated by Eq. (12) [52].

Qlc ¼ qcþ q2c þ k2cr
2
c

2ð1� qcÞ
ð11Þ

dqueu ¼
Qlc

kc
¼ 1

lc
þ q2c þ k2cr

2
c

2kcð1� qcÞ
ð12Þ

3.1.3 Controllers load

The load on a controller in a SDN is primarily driven by

the handling of PACKET_IN messages, which are sent by

switches when a packet does not match any entry in the

switch’s flow table. This typically occurs with new flows,

prompting the controller to determine the forwarding path

and install new flow rules, allowing future packets to be

handled locally. The frequency and volume of these mes-

sages significantly impact the controller’s workload,

affecting network performance and scalability. The load is

quantified using Eq. (13), which calculates the load on

controller c, denoted as Lc, as the sum of loads generated

by all connected switches s, represented by ls [49]. The

average load across all controllers is then found by sum-

ming their individual loads and dividing by the total

number of controllers, as shown in Eq. (14) [23].

Lc ¼
Xn
s¼1

ys:c � ls ð13Þ

LAvg ¼
1

jCj
Xm
c¼1

Lc ð14Þ

3.1.4 Energy usage

Energy usage on the controller level in a SDN can be

broken down into three primary components: the con-

troller’s base energy, the dynamic load of the controller

energy, and the links and transmission energy.

The controller’s base energy refers to the constant

energy consumed by the controller when it is operational,

regardless of its workload. This includes the power

required to maintain basic functions such as running the

operating system, keeping the hardware components

active, and maintaining network connectivity. The base

energy consumption is influenced by the type of hardware

used, such as server specifications and processor type, the

operating system efficiency, and any background processes

running on the controller.

The dynamic load of the controller energy accounts for

the energy consumed by the controller due to its workload,

such as processing PACKET_IN messages, managing flow

tables, and executing control logic. The dynamic load

varies based on network activity, traffic volume, and the

complexity of control decisions. Key factors influencing

this load include the number of connected switches, the

frequency of PACKET_IN messages, the complexity of

routing decisions, and the efficiency of the controller’s

software and algorithms.

The links and transmission energy component includes

the energy used for communication between the controller

and other network elements, such as switches and other

controllers. This encompasses both the transmission of

control messages and the reception of network status

updates. The energy consumption here depends on the

communication protocols used, the distance between net-

work components, the bandwidth requirements, and the

efficiency of the network interfaces.

The energy usage at the controller level of the SDN is

formulated as Eq. (15):

Ec ¼ ebase þ ðedyn � LcÞ þ
X
s2S

d s; cð Þ
bws;c

� etrans ð15Þ

which comprises controller c, the average load of controller

Lc, and the transmission energy usage in links, and bw

refers to the bandwidth of the link. Coefficients ebase, edyn,

and etrans are constants. Equation (16) shows the network’s

average energy usage at the controller level [23].

EAvg ¼
1

m

X
c2C

Ec ð16Þ

3.2 Bedbug-GLA

Bedbug-GLA solves the CPP in two steps as shown in

Fig. 1. In the first step, Bedbug-GLA utilized the devel-

oped ICLA to determine the necessary NC, taking into

account traffic and network size, in order to enhance

latency and reduce energy usage in the SDN. After deter-

mining the NC, in the second step, Bedbug-GLA developed

the Bedbug metaheuristic algorithm and utilized it to assign

controllers to switches, with the aim of improving load

balancing and reducing energy usage and latency.

Fig. 1 Two steps of Bedbug-GLA
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Figure 2 illustrates the overall flowchart of Bedbug-

GLA for solving the CPP. As shown in the figure, Bedbug-

GLA first acquires the network topology and traffic vol-

ume, with the traffic volume being dynamically calculated

by the controllers. It then randomly defines the number of

controllers and assigns them. Subsequently, using the

proposed DCLA, Bedbug-GLA calculates the optimal NC

by considering the network topology and controller load. In

continuation, Bedbug-GLA assigns controllers to switches

using the proposed DBMHA. The DBMHA considers

latency, load balancing, and energy usage of controllers in

its fitness function, thereby solving the controller place-

ment problem effectively.

Bedbug-GLA offers several theoretical advantages over

traditional methods for solving the CPP in SDN. These

advantages stem from its innovative combination of ICLA

and the BMHA, refined into DBMHA.

Bedbug-GLA utilizes ICLA, which provides decentral-

ized learning and adaptability, making it particularly suit-

able for dynamic network environments. Bedbug-GLA

dynamically adjusts the number of controllers based on

network load, ensuring optimal performance under varying

conditions. The Bedbug metaheuristic algorithm offers

flexibility in controller assignment, allowing for efficient

placement across different network topologies and

conditions.

The use of ICLA enables parallel and distributed pro-

cessing, significantly reducing computation time compared

to centralized methods. This efficiency is crucial for han-

dling large-scale networks. DBMHA enhances conver-

gence speed and avoids local optima by incorporating

genetic operators, further improving computational

efficiency.

Bedbug-GLA is robust due to its ability to handle dis-

tributed and evolving networks effectively. It optimizes

resource allocation and adapts to changing network con-

ditions over time, ensuring consistent performance. The

use of chaotic maps and genetic operators in DBMHA

maintains population diversity, preventing premature

Fig. 2 General flowchart of Bedbug-GLA
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convergence and ensuring robust exploration of the solu-

tion space.

Compared to ILP-based dynamic placement methods,

which can be computationally intensive and less adapt-

able to dynamic changes, Bedbug-GLA provides a light-

weight and adaptive solution. It also outperforms other

metaheuristic approaches in load balancing, congested

controllers, and energy efficiency, as demonstrated in

simulation results using real-world network topologies.

3.2.1 Finding number of controllers

Bedbug-GLA developed and utilized irregular cellular

learning automata (ICLA) [31] to determine the required

NCs in the initial phase. The features and benefits of

decentralized learning, adaptability, and parallel processing

inherent in ICLA made it an attractive choice for this task.

ICLA operates in a decentralized manner, allowing indi-

vidual units or cells to learn and adapt based on their local

interactions. This characteristic enables ICLA to effec-

tively manage dynamic and distributed environments.

ICLA can seamlessly adapt to changes in network

structure, traffic patterns, and other environmental factors,

making it particularly suitable for scenarios where adapt-

ability is essential. Its parallel and distributed nature

facilitates efficient and simultaneous learning, thereby

enabling the system to handle large-scale networks

effectively.

When identifying the appropriate number of network

controllers within a network, ICLA demonstrates signifi-

cant potential to adapt to dynamic environments, learn

from feedback, and optimize system configurations. Its

strengths lie in its ability to manage distributed and

evolving networks, optimize resource allocation, and adjust

to changing network conditions over time. This approach

proves especially beneficial in situations where the network

size and structure may change dynamically or when con-

tinuous optimization of network controllers is required

based on varying traffic patterns and loads.

However, it is important to note that the time complexity

of ICLA is influenced by several factors: the number of

cells, the number of actions available to each learning

automaton, and the number of iterations needed for con-

vergence. In large networks, calculating the reinforcement

signal in ICLA can become computationally expensive due

to the necessity for accurate updates of action probabilities

based on environmental feedback. This limitation makes

ICLA less efficient for large-scale or complex problems.

To address these challenges, Developed Cellular

Learning Automata (DCLA) is proposed in this research as

an enhanced version of ICLA, designed to improve its

efficiency and scalability. A detailed discussion of both

ICLA and DCLA is provided in the following sections.

3.2.1.1 Irregular cellular learning automata (ICLA) ICLAs

are mathematical models designed for complex dynamic

systems that comprise numerous simple components with

learning abilities. These components work together to

generate intricate behavioral patterns [53].

An ICLA is a specific type of cellular learning automata

(CLA) that features irregular structures or configurations in

its grid or lattice. Unlike traditional Cellular Automata,

which typically operate on a regular grid (like a square or

hexagonal lattice), ICLA allows for variations in the

arrangement and connectivity of cells. This irregularity can

be in the form of varying cell shapes, sizes, or connection

patterns. ICLA are characterized by their non-uniform

structures, allowing for variations in cell shapes, sizes, and

connectivity within the grid or lattice. Each cell employs

learning algorithms to adapt its behavior based on local

interactions with neighboring cells, enabling dynamic

responses to environmental changes. Despite the irregular

arrangement, these cells maintain local interactions that

can vary significantly due to their layout. ICLAs are par-

ticularly useful in applications involving complex systems,

optimization problems, and adaptive networks, where tra-

ditional regular grid models may fall short, thus providing

a flexible framework for exploring intricate behaviors and

adaptations in distributed systems [54]. The ICLA have a

structure represented as A = (G(V,E), U, A, N, F), where
G(V,E) is a network of nodes and edges, and U is a finite

set of states. A is a collection of learning automata assigned

to the cells of the cellular automata. N is a limited subset of

V, referred to as the neighborhood vector, which according

to Eq. (17), m represents the number of neighboring cells

and xi[V indicates the specific cell in question.

N ¼ fx1; x2; xmg ð17Þ
fu þ xi i ¼ 1; 2; :::; mj g ð18Þ

The neighborhood vector determines the relative posi-

tion of neighboring cells from any specific cell u in the

network G. Equation (18) specifies that the neighbors of a

specific cell u form a set of cells. The neighborhood

function N(u) maps a cell u to its set of neighbors, as

defined in Eq. (19).

N uð Þ ¼ fuþ x1:uþ x2:. . .:uþ xmg ð19Þ

F: Uj ! b is the local rule of the cellular learning

automata at each vertex j, where the set of states of all

neighbors of j is represented by Eq. (20). b [ {0, 1} is the

response value set from the environment, where 0 and 1

correspond to reward and penalty, respectively. b computes

the reinforcement signal for the learning automata based on

the actions chosen by the neighboring cellular learning

automata.

Uj ¼ Uif jði:jÞ 2 Ng þ fUjg ð20Þ
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Each cell of the ICLA represents a learning automaton.

For each learning automata a = {a1, a2, …, ar}, it defines a
set of actions for the learning automaton. p = (p1, p2, …,

pr) is the action probability vector, where pi is the proba-

bility of selecting action ai, satisfying
Pr

i¼1pi ¼ 1, and T

adjusts the action probability vector according to the

response from the environment. The solution vector is

formed by the states of the cells, i.e., the current actions

selected by all cells. Therefore, in each iteration cycle t, the

solution vector can be written by Eq. (21).

S tð Þ ¼ a1 tð Þ; a2 tð Þ; . . .; an tð Þð Þ ð21Þ

where ai(t) is the action chosen by the cellular learning

automata i in cycle t, and the solution vector is updated

along with the evolution of the cellular learning automata.

In ICLA, a set of potential reinforcement signals (b) is
defined based on the actions taken by successor LAs. ICLA

selects an action from a finite set of options based on the

probability distribution of actions and implements it in the

environment. The environment provides feedback, which is

used to update the probabilities of actions using a linear

formula [55]. If the feedback is positive (b = 0), Eq. (22) is

used to update the probabilities. However, if the feedback

is negative (b = 1), Eq. (23) is used with reward and

penalty parameters.

pjðn þ 1Þ ¼ pj nð Þ þ a 1� pj nð Þ
� �

ifj ¼ i
1� að Þpj nð Þifj 6¼ i

�
ð22Þ

pjðn þ 1Þ ¼
1� bð ÞpjðnÞifj ¼ i

b
r � 1

þ 1� bð Þpj nð Þifj 6¼ i

8<
: ð23Þ

3.2.1.2 Developed ICLA (DCLA) Although ICLA offers

several benefits, it is hindered by high computational

complexity when applied to large-scale networks. To

address this limitation, this study proposes DCLA. In

DCLA, GA accelerates the calculation of reinforcement

signals by employing heuristics and optimizing parameters

such as a and b. This approach reduces the computational

overhead associated with precise calculations in ICLA,

leading to faster convergence. In the proposed DCLA, b
values are dynamically set by the GA, which further

enhances convergence speed. In contrast to conventional

ICLA, where reinforcement signal calculations require

accurate and time-consuming computations, DCLA lever-

ages the GA and heuristics to compute these values more

efficiently. This results in faster learning and improved

adaptability in dynamic environments.

DCLA process is outlined in Algorithm 1, with each Ci

cell undergoing a specific function. LAij selects an action

based on its probability vector Pi, with the chosen actions

becoming the old LA genome. A new genome is then

generated through crossover and mutation, and its fitness is

evaluated. If the new genome is superior to the current one,

it replaces it in the cell. Neighboring cells are chosen for

mating based on genome fitness, and reinforcement signals

Algorithm 1 Pseudocode of DCLA
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are regulated through the crossover process and mutation.

The reinforcement signal calculated by genetic algorithm

based on proposed function in Algorithm 2. Its calculation

for each LAij as shown in Figure 3. LAij adjusts its action

probability vector based on the reinforcement signal and

chosen action, while the CLi cell genome evaluates the

experiences of neighboring genomes. This process contin-

ues until a termination condition is reached and GA

accelerates the calculation of the reinforcement signal and

learning in the DCLA.

3.2.1.3 Using DCLA to find NC In order to meet QoS

requirements in SDN, the ideal number of network

switches would be equivalent to the NCs. However, this

approach is not practical in terms of efficiency and cost-

effectiveness. To determine the optimal NC, the scale of

the network and traffic are measured. Bedbug-GLA pro-

poses a solution to finding the optimal NC based on the

load and scale of the SDN by DCLA. When the SDN load

increases, the NC must also increase to handle the added

load and avoid overloading the control layer. Conversely, if

Fig. 3 The reinforcement signal

calculation

Algorithm 2 Pseudocode of reinforcement signal calculation by GA
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the SDN load decreases, some controllers can be put into

sleep mode or disconnected to reduce energy usage and

improve efficiency. DCLA calculates the optimal NC by

taking into account factors such as the number and location

of switches, links between them, bandwidth, controller

processing capacity, cost, and budget allocated for pur-

chasing controllers by providers.

DCLA is used by Bedbug-GLA to determine the optimal

NCs based on the size and structure of the network, traffic

volume, and controller loads. DCLA uses a cell-based

approach where each cell represents a switch and has an

LA. The initial NC is chosen randomly, and DCLA adjusts

it over time by having each LA choose an action based on

its action probability vector. The solution vector

S(t) = ((a1(t), a2(t), …, an(t)) is formed by the actions of all

LAs at each period t. DCLA method has the action set

a = {a1, a2, a3}, where a1 is the action of increasing NC, a2
is the action of decreasing NC, and a3 is the action of fixing

NC, and the action probability vector pj e P is initially set

to 0.33 to ensure fairness in action selection and in each

iteration it updated.

3.2.2 Controller assignment

Bedbug-GLA uses the new BMHA-based metaheuristic for

controller assignment in the second step. Metaheuristics are

fast in finding solutions close to the optimum, but they

sometimes suffer from getting stuck in the local optimum and

premature convergence. Bedbug-GLA proposes DBMHA by

combining BMHA, genetic operators and chaotic map to

speed up the convergence and avoid local optimum.

3.2.2.1 Bedbug meta-heuristic algorithm (BMHA) The

standard BMHA [30] is a relatively recent metaheuristic

optimization algorithm inspired by the behavior of bedbugs

in search of food.

As shown in Algorithm 3, the BMHA begins with the

initialization of a population of bedbugs, randomly dis-

tributed within the search space. Each bedbug Xi (where

i = 1, 2, …, N, and N is the total number of bedbugs)

evaluates its position using a fitness function f(Xi), which

quantifies the quality of the solution corresponding to the

position of each bedbug. The algorithm proceeds through

several iterations. In exploration stage bedbugs move ran-

domly to explore the search space. Position update by

Eq. (24). Where a is a control parameter, rand is a random

number between 0 and 1, ub and lb are the upper and lower

bounds of the search space.

Xi t þ 1ð Þ ¼ Xi tð Þ þ a:rand: ub� lbð Þ ð24Þ

In the exploitation stage bedbugs move towards the best

solutions found so far and position update by Eq. (25).

Where b is a control parameter, LBest is the position of the

local best bedbug.

Xi t þ 1ð Þ ¼ Xi tð Þ þ b:rand: LBest � Xi tð Þð Þ ð25Þ

Equation (26) illustrates how a bedbug’s subsequent

position can be determined by considering its current

location, the target location, and the positions of all other

bedbugs in the vicinity. The first component of this equa-

tion emphasizes the relationship between the current bed-

bug’s position and those of its peers, allowing for the

establishment of effective search agent locations sur-

rounding the target.

A notable feature of the BMHA is that it utilizes three

distinct vectors to represent both speed and position for

each bedbug. This differentiates BMHA from other algo-

rithms, enhancing its ability to navigate complex environ-

Algorithm 3 Pseudocode of BMHA
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ments. The update mechanism for a search agent’s position

is based on several factors: its current position, the best-

known condition across the population, the positions of all

other search agents, and the estimated location of the

target.

In this context, wi denotes the weight of each bedbug i,

which reflects the quality of the solution associated with

that specific bedbug within the population X. The coeffi-

cients c1, c2, and c3 are referred to as learning coefficients,

where c1 and c3 represent individual learning coefficients

and c2 serves as an aggregative coefficient. Typically, these

coefficients are non-negative and do not exceed a value of

2. Furthermore, Rand1, Rand2, and Rand3 are random

vectors corresponding to the length of the position vector,

with values uniformly distributed between 0 and 1. At each

step, each bedbug moves towards its optimal position using

three distinct strategies relative to its current location. The

bedbug returns to a position where it previously found

prey, about half a meter away from the previous location.

This position is remembered and referred to as the best

nostalgic value for the bedbug, denoted as LBest. Addi-

tionally, the bedbug moves towards the best position ever

discovered by the entire bedbug population, guided by

pheromone trails left by other insects, which attract them to

aggregate. This is known as GBest and calculated by

Eq. (26). Lastly, the bedbug is drawn to the warmth

emitted by the prey’s body, guiding its movement towards

this heat source, referred to as SBest and calculated by

Eq. (27). These strategies help the bedbugs navigate effi-

ciently in their search for prey.

GBest ¼
XN

J¼1&J 6¼i
SðdijÞcdij ð26Þ

SBest ¼ tan
E

2
� g� beg � D
� �

ð27Þ

The distance between bedbugs i and j is represented by

d, while S denotes a function that quantifies the strength of

social interactions among bedbugs. The expression bdij-
= (Xj - Xi)/dij defines a vector pointing from bedbug i to

bedbug j.

Additionally, the intensity of heat transfers and carbon

dioxide emissions from the human body can be modeled

using angle E, which indicates the orientation of the target

point relative to a given bedbug. The constant g represents

heat transfer properties, while beg quantifies the percentage

reduction in heat over distances of one centimeter,

specifically set at 0.185. This comprehensive approach

allows for a nuanced understanding of how bedbugs nav-

igate toward their targets while accounting for environ-

mental influences and inter-agent dynamics.

Xi t þ 1ð Þ ¼ Xi tð Þ þ ðwi � Vi tð ÞÞ þ ðC1 � Rand1 tð Þ
� LBesti � Xi tð Þð ÞÞ þ ðC2 � Rand2 tð Þ
� GBesti � Xi tð ÞÞð Þ
þ C3 � Rand3 tð Þ � SBesti � Xi tð Þð Þð Þ ð28Þ

After updating their positions, each bedbug re-evaluates

its fitness using the same fitness function f(Xi).

FðXÞ ¼
XN
i¼1

f ðXiÞ ð29Þ

where Bbest represents the optimal solution identified by the

algorithm. The BMHA thus combines exploration and

exploitation effectively, leveraging social interactions

among bedbugs to enhance the search for optimal solutions

in complex problem spaces.

3.2.2.2 Developed bedbug meta-heuristic algorithm
(DBMHA) The BMHA offers significant advantages for

controller assignment in SDN. Its flexibility allows it to

adapt to varying network conditions and topologies,

ensuring optimal controller placement. The algorithm is

efficient, quickly converging to near-optimal solutions,

which reduces computation time. It also excels at avoiding

local optima by effectively exploring the search space to

find better global solutions. Additionally, its simplicity and

understandability make it accessible and practical for real-

world applications, ensuring robust and efficient manage-

ment of SDN controllers.
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However, BMHA like many optimization algorithms,

has its own set of limitations. The BMHA may converge

too quickly to a local optimum, especially in complex

landscapes with many local minima. This can limit its

ability to explore the search space thoroughly. Without

explicit mechanisms to maintain population diversity, the

algorithm may lose valuable genetic material, resulting in a

homogeneous population that can hinder exploration.

Figure 4 presents the flowchart of the DBMHA algo-

rithm. The sections highlighted in red represent the addi-

tions made to the standard BMHA. As illustrated in

Algorithm 4, DBMHA incorporates a chaotic map to

enhance the diversity of the initial population while uti-

lizing genetic operators to escape local optima and improve

convergence speed. DBHA start with defining parameters

and defining the initial chaotic population. then the fitness

of all bedbugs is calculated using the proposed fitness

function [Eq. (29)]. Based on experimental results, a

threshold value of 0.5 is established. To maintain the

algorithm’s efficiency, a chaotic number is generated using

the logistic function in each iteration and stored in variable

Z. This value Z is then compared to the threshold; if Z ex-

ceeds the threshold, a new bedbug is generated using

genetic operators. Specifically, crossover and mutation are

applied to the Global-best bedbug (GBest) and the second-

best bedbug (LBest), which are selected as elite individuals.

Otherwise, the algorithm proceeds with the standard

BMHA. In the continue, if the new bedbug is better than

the previous best, the best bedbug (GBest) is updated. This

process continues until a terminal condition is met and the

algorithm converges.

The logistic map serves as a classic example of a simple

mathematical model that demonstrates chaotic behavior.

The equation [Eq. (30)] represents the logistic map used to

generate chaotic values, where xn denotes the current value

(ranging from 0 to 1). In this chaotic map, xn is calculated

randomly; however, DBMHA uses the system time as the

seed for the random function to produce varied outputs. r is

a parameter typically set between 3.57 and 4 to ensure

chaos.

xnþ1 ¼ r � xn � ð1 � xnÞ ð30Þ

To assign the controllers, the solutions’ length is defined

as the number of switches and each element represents a

coordinate switch. Figure 5 shows an example with 10

switches and 3 controllers. There are 10 switches in the

SDN, so the solution length is 10. Index of each element

indicates the corresponding switch. The values of elements

are the IDs of the controllers selected to assign switches.

The assignment in this example is as follows: controller 1

Algorithm 4 Pseudo-code of DBMHA
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manages the 1st, 3rd, 7th, and 9th switches, controller 2

manages the 4th, 5th, and 8th switches, and controller 3

manages the 2nd, 6th, and 10th switches.

LBest and GBest bedbugs are selected as elite individ-

uals to apply GA operators on them. Single-point crossover

involves selecting a random point on both bedbugs. This

chosen point splits the parent cells into segments, and

crossover takes place by swapping these segments to create

new offspring [56]. An illustration of this crossover process

between two bedbugs in Fig. 6.

The variety of the samples increases by mutation oper-

ator. It also prevents the local optima. There are different

types of mutations. However, as shown in Fig. 7, the

mutation is applied to newly borne bedbugs and is done by

randomly selecting and changing an element of a bedbug.

One element of a bedbug is randomly selected for muta-

tion. Then, the random number [1, |C|] is selected and

replaced by the selected element. |C|= m is the controller

count in the SDN. In this example, the selected element is

switch 5 and the random number for the controller is 3, so

the value of the 5th element is changed to 3.

As shown in Algorithm 4, After the birth of new bed-

bugs, their fitness is calculated. If the fitness of the new

bedbugs is smaller than the fitness of best bedbug, they are

added to the bedbugs ‘population as new solutions and the

GBest is updated.

This paper aims to address energy usage, controller load,

and propagation latency parameters. The fitness function

for bedbug Xi is defined using Eqs. (31) and (32), with each

metric normalized by its corresponding maximum value.

The maximum values are determined by the network

operator and reflect the physical characteristics of the

network devices. The weighted sum method is used to

determine the degree of importance of each metric, with

adjustable weighting factors w1, w2, and w3. These factors

were determined through empirical testing and experi-

mentation, as presented in Table 2.

fðXiÞ ¼ w1�
dpropAvg
dpropMax

� �
þ w2� LAvg

LMax

� �
þ w3

� EAvg

EMax

� �
ð31Þ

Min f Xið Þ ð32Þ

3.3 Computational complexity

Calculating algorithm complexity is essential for ensuring

performance, efficiency, and scalability in software sys-

tems. Therefore, this section analyzes the computational

complexity of the Bedbug-GLA algorithm, which consists

of two main steps.

The first step of Bedbug-GLA utilizes ICLA to deter-

mine the required number of controllers. This step involves

several key operations. Initialization of each cell’s action

probability vector results in a complexity of O(n),

where n is the number of cells (switches). The action

selection and learning process, repeated over time until

convergence, adds a factor of t iterations, leading to a

complexity of O(n 9 t). Additionally, crossover and

mutation operations contribute to the overall complexity

but are typically proportional to n. Assuming t is signifi-

cant, the overall complexity of this step is dominated

by O(n 9 t).

Fig. 4 The flowchart of DBMHA (Color figure online)

Fig. 5 An example of solutions
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The second step involves using a modified Bedbug

metaheuristic algorithm enhanced with genetic operators

(DBMHA) for controller assignment. The complexity of

this step can be analyzed by considering the operations

involved in DBMHA. Initialization has a complexity

of O(P), where P is the population size. Chaotic map

generation contributes a complexity of O(t), while genetic

operations (crossover and mutation) contribute a com-

plexity of O(n 9 t 9 P). The fitness calculation, which

involves evaluating a weighted sum of metrics for each

bedbug, dominates the complexity with O(n 9 m 9 P 9

t), where m is the number of controllers. Overall, the

complexity of this step is generally O(n 9 m 9 P 9 t),

reflecting the interplay between the number of switches,

controllers, population size, and iterations. The overall

complexity of Bedbug-GLA is primarily influenced by the

second step, making it O(n 9 m 9 P 9 t).

4 Performance evaluation

To evaluate the performance of Bedbug-GLA, simulations

were done and Bedbug-GLA is compared with BMHA [30]

to show the effect of improvement. It was also compared

with other state-of-the-art metaheuristic algorithms in CPP

including PSO [11], GEWO [12], and ALO [43]. PSO is

one of the most common and popular swarm intelligence

techniques. The GEWO approach combines a hybrid

metaheuristic with game theory. The ALO strikes a great

balance between exploration and exploitation, demon-

strating good performance. For each method evaluates key

parameters such as controller loads, congested controllers,

end-to-end delay, and energy consumption.

4.1 Simulation setup

The methods and algorithms were implemented using

MATLAB on a computer with an Intel Core i7 processor

and 16 GB RAM. The algorithms ran for 30 iterations. The

standard network topology from the ITZ [56, 57] is used,

along with a range of network topologies from various

providers. This repository features over 200 network

topologies from Internet Service Providers (ISPs) at the

Point of Presence level. Each ISP’s network graph is pro-

vided, with every node (referred to as a switch) marked

with its geographical coordinates. The selection included

the Internet2 OS3E network topology [57], a widely

adopted configuration for research purposes [11, 38, 42],

consisting of 34 nodes interconnected by 42 links. Addi-

tionally, the IRIS topology, encompassing 51 nodes and 64

links, represents a common network prevalent in Ten-

nessee, Kentucky, Alabama, Virginia, and Georgia. Fur-

thermore, the Colt Telecom topology [58], spanning

globally with 153 nodes and 197 links, known for its

extensive coverage and complexity, was also chosen.

These topologies were specifically selected for evaluating

and testing the methods, with detailed specifications pro-

vided in Table 3. Figure 8 visually showcases the utiliza-

tion of real-world topologies. The initial population was set

to 30. The traffic was generated randomly, defined between

different origins and destinations with a varying number of

packets in the range of 0 to 500. Table 4 shows the sim-

ulation parameters and constants and their values.

Fig. 6 The crossover on bedbugs (Color figure online)

Fig. 7 An example of a mutation (Color figure online)

Table 3 The details of the SDNs

Network Type Geo extent Geolocation Layer No. switch No. links

1 Internet2 OS3E (InternetMCI) COM Country USA IP 34 42

2 IRIS COM Region Tennessee, USA IP 51 64

3 Colt COM Continent Europe IP 153 177

Table 2 The weights of

parameters
Coefficient Value

w1 0.59

w2 0.4

w3 0.01
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4.2 Weights’ sensitivity analysis

The fitness function of DBMHA integrates multiple per-

formance metrics, including energy consumption, latency,

and load balancing, with weights assigned to prioritize

energy efficiency and latency. To assess the robustness and

flexibility of DBMHA, a comprehensive sensitivity

analysis was conducted. This involved varying each weight

by ± 20% and examining the impact on energy con-

sumption and latency across different numbers of con-

trollers. The analysis aimed to identify which weights exert

the most significant influence on system performance and

to explore potential trade-offs between energy efficiency

and latency.

The sensitivity analysis revealed that adjusting the

weights leads to notable changes in both energy con-

sumption and latency. For example, increasing the weight

on energy efficiency generally results in reduced energy

consumption but may slightly increase latency. Con-

versely, prioritizing latency leads to faster response times

at the expense of higher energy usage. These findings

underscore the flexibility of the approach and highlight the

importance of carefully selecting weights based on specific

operational requirements. By exploring these trade-offs,

system performance can be optimized to meet diverse

needs, whether prioritizing energy efficiency, minimizing

latency, or achieving a balanced compromise between

these competing objectives.

To evaluate the impact of weighting factors in the

DBMHA fitness function, experiments were performed by

adjusting the values of w1, w2, and w3 for parameters such

as energy consumption and latency. The results are sum-

marized in Table 5, which presents energy consumption

values for different combinations of these coefficients in

the Internet2 OS3E topology. The algorithm achieves

optimal performance, highlighted in grey, when the

weighting factors are set to w1 = 0.59, w2 = 0.40,

Fig. 8 The Internet2 OS3E, IRIS and Colt network topologies [59]

Table 4 The simulation parameters and values

Parameter/constants value

Initial population 30

Run time 30 iterations

Traffic Random (0, 500)

ebase 0.1

edyn 0.001

etrans 1

li 1

a, b (DCLA) 0.01

beg (BMHA) 0.185

MinVar (BMHA) 0

MaxVar (BMHA) 1

Number of search agents (ALO) 40

r1, r2 (PSO, GEWO) A random number in [0,1]

c1’ (PSO) 1.7

c2’ (PSO) 2

Inertial weight (PSO) 0.75
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and w3 = 0.01. This optimal configuration demonstrates

the effectiveness of DBMHA in balancing competing

performance metrics.

4.3 Energy usage

Reducing energy usage is a key objective of this study.

Figures 9, 10, and 11 illustrate the average energy usage in

Joules for the Internet2 OS3E, IRIS, and Colt topologies

with different NCs, respectively. These figures demonstrate

that Bedbug-GLA enhances the energy efficiency of the

controllers within the network. Energy consumption in the

control plane is influenced by the NCs, their load, and the

distance packets must travel. Bedbug-GLA exhibits energy

usage of less than 2000 J in the Internet2 OS3E topology,

under 2400 J in the IRIS topology, and below 7000 J in the

Colt topology, all of which are lower than that of the

compared algorithms. Unlike PSO and ALO, BMHA,

GEWO, and Bedbug-GLA incorporate energy consumption

considerations into their controller placement strategies,

leading to lower energy usage. However, Bedbug-GLA

distinguishes itself by achieving superior performance and

reduced energy consumption. This is due to its innovative

approach in the second step, where the fitness function

integrates DBMHA to optimize both energy consumption

and load balancing. As a result, Bedbug-GLA efficiently

allocates controllers to switches, significantly reducing the

network’s overall energy consumption. Moreover, by

ensuring balanced traffic distribution across the network,

Bedbug-GLA prevents resource overutilization, which in

turn contributes to its low energy usage profile.

The Internet2 OS3E topology with different controllers

is selected to calculate the improvement percentage in

energy usage parameters for Bedbug-GLA. Table 6 shows

the mean energy usage in 100 runs for different topologies

with 3, 4 and 5 NC. Bedbug-GLA improves energy usage

Table 5 Sensitivity analysis of weights on energy consumption and latency (Color table online)

Fig. 9 The energy usage in the

Internet2 OS3E topology (Color

figure online)
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up to about 20% compared to PSO and by about 18%

compared to ALO, and about 4% compared to GEWO, and

BMHA.

4.4 Load of controllers

To evaluate the load on the controllers, both the average

and maximum loads were considered for each method. In

this simulation, it was assumed that the route calculations

for a single flow from switch i required li units of load on

the controller, with li = 1. Figures 12, 13, and 14 display

the average loads on controllers in the Internet2 OS3E,

IRIS, and Colt topologies with 3, 4, and 5 controllers,

respectively. These topologies were subjected to varying

traffic conditions, with the number of flows generated

randomly within the range of 0 to 500. As shown in the

figures, the average controller load for Bedbug-GLA across

different topologies and controller counts is lower than that

of other methods, indicating effective load distribution. In

contrast, PSO exhibits the highest load on its controllers

due to being trapped in local optima. Regarding controller

load performance, BMHA fails to reach maximum flow

capacity. PSO, ALO, and BMHA generally demonstrate

poor performance, often resulting in high maximum con-

troller loads due to inadequate load balancing. With an

equal NCs, Bedbug-GLA consistently outperforms other

methods, including BMHA. This superior performance is

attributed to Bedbug-GLA’s enhancements over the origi-

nal BMHA through strategic modifications. The integration

of mutation and crossover operators into BMHA improves

the exploration–exploitation trade-off, while generating the

initial population using chaotic maps enhances population

diversity. This ultimately increases the likelihood of

quickly and accurately identifying the optimal solution.

Figures 15, 16, and 17 illustrate the maximum load on

controllers in the Internet2 OS3E, IRIS, and Colt topolo-

gies with 3, 4, and 5 controllers, respectively. It is clear that

the maximum loads of controllers using the Bedbug-GLA

method are lower compared to other methods, demon-

strating effective load balancing. Since GEWO, BMHA,

and Bedbug-GLA consider controller load in their fitness

functions, their maximum controller loads are similar. In

contrast, PSO and ALO exhibit higher and more varied

maximum loads due to their inferior load balancing capa-

bilities. Similar to the average controller loads, PSO shows

higher maximum loads compared to other methods, which

is attributed to its poor load distribution. Through efficient

load distribution among controllers, Bedbug-GLA suc-

cessfully reduces the maximum load on controllers,

showcasing its superior performance in load balancing.

Table 7 shows the average of maximum loads of con-

trollers in 100 runs for Internet2 OS3E topology in dif-

ferent NCs, average of them and improvement percentage

of Bedbug-GLA to each method. As shown in Table 7,

Fig. 10 The energy usage in the IRIS topology (Color figure online)

Fig. 11 The energy usage in the Colt topology (Color figure online)

Table 6 The energy usage analysis of Bedbug-GLA in comparison with other methods (Color table online)

Method    NC=3 NC=4 NC=5 AVG Percent improvement (%) 
PSO 2266.05 2396.92 2407.24 2356.74 19.85 

ALO 2146.42 2228.37 2518.13 2297.64 17.79 

GEWO 1880.38 1948.24 2043.90 1957.51 3.51 
BMHA 1880.65 1958.09 2092.74 1977.16 4.47 

Bedbug-GLA 1801.70 1902.39 1962.49 1888.86 0 
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Bedbug-GLA entails 18% improvement to PSO, 10%

improvement to ALO, & 4% improvement to GEWO and

BMHA.

4.5 Adaptation to traffic variability

The Bedbug-GLA algorithm is designed to optimize SDN

controller placement, ensuring efficient load balancing

across the network. However, real-world networks often

face sudden traffic spikes and long-term changes in traffic

patterns, which can significantly impact network perfor-

mance. This section explores how Bedbug-GLA adapts to

these dynamic conditions.

Sudden traffic spikes can overwhelm network resources,

leading to congestion and increased latency. The Bedbug-

GLA algorithm incorporates mechanisms to dynamically

adjust controller loads during such spikes. By adjusting the

NC based on the real-time traffic conditions and adjusting

controller assignment accordingly, Bedbug-GLA ensures

that no single controller becomes overwhelmed, main-

taining optimal network performance even under stress.

To evaluate the performance of the methods under spike

traffic conditions, a traffic pattern is applied to the network

as shown in Fig. 18. The chart shows a baseline traffic

volume of 100 flows from time 1 to 4 s. From time 5 to

10 s, the traffic volume increases to a peak of 500 flows,

representing a traffic spike. After the peak, the traffic

gradually decreases back to the baseline level by time 15 s.

Analyzing the results from the Tables 8, 9 and 10 for the

Internet2 OS3E, IRIS, and Colt topologies provides

Fig. 12 The average load of

controllers in the Internet2

OS3E topology (Color

figure online)

Fig. 13 The average load of

controllers in the IRIS topology

(Color figure online)
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valuable insights into how different algorithms adapt to

traffic variability. Across all three topologies, PSO and

ALO consistently demonstrate superior latency perfor-

mance, which is crucial for applications requiring real-time

communication. However, this comes at the cost of higher

energy consumption and less effective load balancing

compared to Bedbug-GLA and BMHA. The latter algo-

rithms excel in energy efficiency and load balancing,

making them more suitable for environments where

resource optimization is paramount.

In the Internet2 OS3E topology, Bedbug-GLA shows a

load balancing index of 0.95 with five controllers, indi-

cating excellent load distribution. In contrast, PSO and

ALO have lower load balancing indices but achieve better

latency. This trend is consistent across the IRIS and Colt

topologies, where Bedbug-GLA maintains superior load

balancing while PSO and ALO excel in latency. Notably,

the larger Colt topology highlights the scalability chal-

lenges faced by all algorithms, with Bedbug-GLA and

Fig. 14 The average load of

controllers in the Colt topology

(Color figure online)

Fig. 15 The maximum load of

controllers in the Internet2

OS3E topology (Color

figure online)
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Table 7 The max loads of controllers’ analysis of Bedbug-GLA in comparison with other methods (Color table online)

Method    NC=3 NC=4 NC=5 Average Percent improvement (%) 

PSO 1705 1470 1305 1493.33 18.24 

ALO 1400 1370 1301 1357 10.02 

GEWO 1340 1240 1240 1273.333 4.11 

BMHA 1350 1250 1200 1266.67 3.61 

Bedbug-GLA 1300 1200 1163 1221 0.00 

Fig. 16 The maximum load of

controllers in the IRIS topology

(Color figure online)

Fig. 17 The maximum load of

controllers in the Colt topology

(Color figure online)
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BMHA showing resilience in maintaining efficient load

balancing despite increased network size.

The results underscore the importance of considering

multiple performance metrics when evaluating SDN con-

troller placement strategies. While PSO and ALO are ideal

for latency-sensitive applications, Bedbug-GLA, GEWO

and BMHA are better suited for environments prioritizing

energy efficiency and load balancing. This analysis pro-

vides a comprehensive view of how different algorithms

perform under varying network conditions, aiding in the

selection of the most appropriate algorithm based on

specific network requirements.

Table 8 Performance

comparison of methods under

traffic spikes in Internet2 OS3E

topology

Algorithm NC Average latency (ms) Energy consumption (J) Load balancing index

Bedbug-GLA 3 12.5 180 0.85

Bedbug-GLA 4 10.2 200 0.92

Bedbug-GLA 5 8.5 220 0.95

BMHA 3 15.1 190 0.80

BMHA 4 12.8 210 0.88

BMHA 5 11.2 230 0.90

GEWO 3 13 185 0.82

GEWO 4 10.4 210 0.92

GEWO 5 9.2 230 0.92

PSO 3 9.5 280 0.60

PSO 4 8.2 300 0.65

PSO 5 7.1 320 0.70

ALO 3 8.8 290 0.55

ALO 4 7.5 310 0.60

ALO 5 6.9 330 0.65

Bold represent the best (most optimal) value for each parameter within the table

Table 9 Performance

comparison of methods under

traffic spikes in IRIS topology

Algorithm NC Average latency (ms) Energy consumption (W) Load balancing index

Bedbug-GLA 5 11.5 240 0.88

Bedbug-GLA 6 9.8 275 0.92

Bedbug-GLA 7 8.5 300 0.95

BMHA 5 14.1 250 0.82

BMHA 6 11.9 280 0.85

BMHA 7 10.5 310 0.88

GEWO 5 11.5 240 0.84

GEWO 6 10.1 280 0.89

GEWO 7 9.2 310 0.90

PSO 5 9.5 320 0.60

PSO 6 8.2 350 0.65

PSO 7 7.1 380 0.70

ALO 5 10.8 330 0.55

ALO 6 9.3 360 0.60

ALO 7 8.5 390 0.65

Bold represent the best (most optimal) value for each parameter within the table

Fig. 18 Traffic Flow with Sudden Spikes
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4.6 Congested controllers

When the load level (Lc) and queue length (Qlc) in a

specific controller (c) reach a threshold (Qt), the controller

is considered congested, which is defined as occurring at

90% of its load capacity. To evaluate congestion and

overloads in the controllers, each controller’s capacity and

queue length are set to accommodate 10 flows, with Qt also

set at 90%. Figures 19, 20, and 21 illustrate the total

overload of congested controllers within the Internet2

OS3E, IRIS, and Colt topologies under random traffic

conditions.

Bedbug-GLA, BMHA, and GEWO effectively assign

controllers in SDN to achieve load balancing at the

controller level and reduce congestion. To this end, these

methods and algorithm consider the load of controllers in

their fitness functions. In contrast, PSO and ALO demon-

strate lower performance regarding the load on controllers

and the number of congested controllers, primarily because

they do not take controller load into account during the

assignment process. Bedbug-GLA addresses this issue by

prioritizing load balancing and minimizing congestion.

Additionally, Bedbug-GLA determines the appropriate

NCs through DCLA, increasing the NCS as needed to

avoid congestion while reducing the count to conserve

energy and costs when possible.

The Internet2 OS3E topology with different controllers

is selected to calculate the improvement percentage in 100

Table 10 Performance

comparison of methods under

traffic spikes in IRIS topology

Algorithm NC Average latency (ms) Energy consumption (W) Load balancing index

Bedbug-GLA 10 14.2 420 0.85

Bedbug-GLA 11 12.1 450 0.90

Bedbug-GLA 12 10.5 490 0.93

BMHA 10 17.1 450 0.80

BMHA 11 14.5 470 0.85

BMHA 12 12.8 500 0.88

GEWO 10 16.2 420 0.82

GEWO 11 14.5 460 0.85

GEWO 12 10.8 490 0.90

PSO 10 11.5 550 0.60

PSO 11 9.8 600 0.65

PSO 12 8.5 650 0.70

ALO 10 13.5 580 0.55

ALO 11 11.8 630 0.60

ALO 12 10.2 680 0.65

Bold represent the best (most optimal) value for each parameter within the table

Fig. 19 The average load of the

congested controllers in the

Internet2 OS3E topology (Color

figure online)
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runs in the overload of congested controllers for Bedbug-

GLA. As shown in Table 11, Bedbug-GLA exhibits about

69%, 53%, 16% and 27% improvement in the over load of

congested controllers’ parameter compared to PSO, ALO,

GEWO and BMHA, respectively.

4.7 End-to-end delay

Figures 22, 23, and 24 illustrate the end-to-end delay in the

Internet2 OS3E, Iris, and Colt topologies for the PSO,

ALO, BMHA, and Bedbug-GLA with 3, 4, and 5 NCs,

respectively. From these figures, it is evident that ALO

demonstrates the best performance in terms of end-to-end

delay compared to the other methods evaluated. This

superior performance can be attributed to the fact that both

PSO and ALO primarily focus on minimizing latency and

network delay alongside reliability parameters.

In contrast, while BMHA and Bedbug-GLA also take

into account propagation delay, they additionally incorpo-

rate energy usage and load parameters into their opti-

mization processes. This inclusion is crucial as it highlights

a significant trade-off between energy efficiency and

latency. Specifically, optimizing for lower energy con-

sumption may lead to increased delays in packet trans-

mission due to factors such as reduced processing power or

longer paths taken to conserve energy.

Moreover, in scenarios where stringent latency

requirements exist, such as real-time applications, the

Fig. 20 The average load of the

congested controllers in the

IRIS topology (Color

figure online)

Fig. 21 The average load of the

congested controllers in the Colt

topology (Color figure online)
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Table 11 The loads of congested controllers’ analysis of Bedbug-GLA in comparison with other methods (Color table online)

Method    NC=3 NC=4 NC=5 AVG Percent improvement (%) 
PSO 605 370 205 393.33 69.24 

ALO 300 270 201 257.00 52.92 

GEWO 220 120 90 143.33 15.58 

BMHA 250 150 100 166.67 27.40 

Bedbug-GLA 200 100 63 121.00 0.00 

Fig. 22 End-to-end delay in the

Internet2 OS3E topology with

different controller numbers

(Color figure online)

Fig. 23 End-to-end delay in the

IRIS topology with different

controller numbers (Color

figure online)
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prioritization of energy savings could compromise perfor-

mance. Therefore, it is essential to strike a balance between

these competing objectives. The Bedbug-GLA algorithm

aims to address this trade-off by intelligently managing the

placement of controllers to optimize both energy efficiency

and latency.

In summary, while ALO excels in reducing end-to-end

delay by focusing solely on latency parameters, Bedbug-

GLA’s approach illustrates the complex interplay between

energy consumption and latency in network performance.

This analysis underscores the importance of considering

multiple performance metrics when evaluating controller

placement strategies in SDNs.

4.8 Scalability evaluation of bedbug-GLA

In the context of SDN, scalability is crucial for efficiently

managing large-scale networks comprising tens of thou-

sands of devices while maintaining performance under

varying loads. This section evaluates the performance of

Fig. 24 End-to-end delay in the

Colt topology with different

controller numbers (Color

figure online)

Fig. 25 Evaluating the effect of energy consumption across different network scales
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Bedbug-GLA in terms of energy consumption, load bal-

ancing, and latency across different network sizes. It is

assumed that each controller can effectively manage

approximately 500 switches. A standard 10 Gbps band-

width per link is assumed in the simulations, allowing the

evaluation of Bedbug-GLA’s scalability without variable

bandwidth constraints.

As illustrated in Fig. 25, the total energy consumption

increases from 10,000 kJ for 1000 switches to 19,500 kJ

for 50,000 switches. This non-linear increase in energy

consumption is attributed to the growing number of con-

trollers and inefficiencies that arise at larger scales.

Although Bedbug-GLA optimizes controller placement

using the ICLA and the DBMHA, scaling up the network

size still results in significant increases in energy usage. For

smaller networks (e.g., approximately 1000 switches),Fig. 26 Evaluating the effect of Load imbalancing degree across

different network scales

Fig. 27 Evaluating the effect of

latency across different network

scales

Fig. 28 The convergence rates

of the algorithms in the

Internet2 OS3E topology (Color

figure online)
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energy consumption remains relatively low due to fewer

controllers. However, for large-scale networks (e.g.,

approximately 50,000 switches), energy consumption

grows substantially.

As shown in Fig. 26, the load imbalance degree

decreases non-linearly as the number of switches increases.

This indicates that Bedbug-GLA effectively enhances load

balancing in larger networks. The ICLA and the enhanced

metaheuristic algorithm (DBMHA) contribute to this

improvement by optimizing controller placement and

traffic distribution. Bedbug-GLA demonstrates strong

scalability in terms of load balancing, making it suitable for

large-scale SDNs.

The average latency experienced by flows increases

slightly as the network scales. However, this increase is

manageable, rising from 5 ms for 1000 switches to 15 ms

for 50,000 switches (Fig. 27). The latency grows

logarithmically with the number of switches, indicating

that Bedbug-GLA handles scalability well. Logarithmic

growth is slower compared to linear or exponential growth.

Bedbug-GLA’s two-step approach (ICLA for determining

controllers and DBMHA for assigning them) ensures that

latency remains manageable even as the network size

grows. The results suggest that Bedbug-GLA is suitable for

large-scale SDNs where low latency is critical.

4.9 The convergence rates

Figures 28, 29, and 30 illustrate the rapid convergence of

the algorithms over 100 iterations across various network

topologies. The convergence rate charts reveal that the cost

associated with PSO is higher than that of the other algo-

rithms, likely due to PSO becoming trapped in local

optima. The graphs clearly demonstrate that Bedbug-GLA

Fig. 29 The convergence rates of the algorithms in the IRIS topology (Color figure online)

Fig. 30 The convergence rates

of the algorithms in the Colt

topology (Color figure online)

Cluster Computing          (2025) 28:660 Page 31 of 35   660 

123



consistently outperforms other advanced algorithms by

identifying superior solutions in a shorter time frame. This

success can be attributed to Bedbug-GLA’s efficient search

strategies, effective use of heuristics, and its adeptness at

navigating complex and dynamic network environments.

The use of chaotic maps in Bedbug-GLA enhances the

diversity of the initial population, resulting in lower costs

from the first iteration. Chaotic dynamics facilitate more

effective exploration by generating a wide range of search

points quickly, which is particularly beneficial in complex,

non-linear problems. Additionally, chaotic maps help bal-

ance exploration and exploitation phases, leading to

improved convergence towards global optima.

Additionally, the integration of GA operators within

Bedbug-GLA, combined with the enhancement of initial

population diversity through chaotic maps, offers several

benefits and boosts its performance. GAs are well-known

stochastic search methods effective for a wide range of

optimization problems. By incorporating these operators,

Bedbug-GLA enhances its global exploration and

exploitation capabilities, avoiding local optima and

improving its convergence rate. This leads to faster and

more efficient solution discovery. The hybrid approach

leverages the strengths of multiple methods, making Bed-

bug-GLA more robust and adaptable to complex, nonlinear

problems, allowing it to optimize efficiently across various

domains.

5 Conclusion

The Controller Placement Problem involves determining

an optimal number of network controllers, their place-

ments, and the assignments of these controllers to switches.

Previous studies have not adequately addressed the joint

optimization of multiple critical factors, including energy

consumption, load balancing, latency, and the identification

of an appropriate NCs within their methodologies. While

some research has concentrated on specific aspects—such

as optimizing the NCs while improving latency or

enhancing a subset of objectives—there remains a

notable gap in the literature regarding a comprehensive

approach that simultaneously tackles energy efficiency,

load balancing, latency, and controller count.

This paper aims to fill the existing gap by employing a

hybrid approach that integrates reinforcement learning

algorithms with metaheuristics. A novel version of rein-

forcement learning is introduced alongside an enhanced

version of the BMHA, termed Bedbug-GLA. Bedbug-GLA

employs an ICLA to determine the optimal NCs and uti-

lizes the BMHA to enhance performance and speed by

incorporating genetic operators and chaotic maps. These

genetic operators help avoid local optima traps and facili-

tate the assignment of controllers to switches more effec-

tively. The ITZ dataset and the Internet2 OS3E topology

are used to evaluate the proposed method, with results

showing improvements ranging from 4 to 18% in the

maximum load of controllers, about 16% to 69%

improvement in the overload of congested controllers, and

4% to 20% in energy usage compared to PSO, ALO,

GEWO, and BMHA. Bedbug-GLA’s performance is

comparable to PSO and ALO in terms of latency, but it

uniquely balances energy consumption and latency as a

multi-objective method. Unlike PSO and ALO, which only

improve latency without considering energy consumption,

Bedbug-GLA may exhibit slightly higher latency but offers

significantly lower energy consumption, providing a bal-

anced approach to optimizing both energy efficiency and

latency.

In future research, enhancing the reliability of Bedbug-

GLA will involve incorporating robustness measures cap-

able of withstanding network failures. This will include

testing in edge environments, such as networks with high

variability in node connectivity, to assess the resilience of

the algorithm under extreme conditions. The proposed

Bedbug-GLA is a hybrid of reinforcement learning and

metaheuristics. Due to its metaheuristic structure in the

controller assignment step, it may find near-optimal solu-

tions but may not always find the optimal answer. There-

fore, in the future, efforts to address this limitation by using

more advanced optimization techniques will be necessary.

Additionally, the integration of advanced optimization

techniques, such as deep reinforcement learning and hybrid

evolutionary algorithms, will be explored to further

improve performance in the context of the CPP. Extensive

comparative studies will be conducted to evaluate the

efficacy of these emerging optimization algorithms in

complex network environments, alongside other tailored

approaches.
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54. Topa, P., Wąs, J.: New trends in complex collective systems.

Journal of Comput. Sci. 5, 35 (2017). https://doi.org/10.1016/j.

jocs.2017.05.020

55. Thathachar, M.A., Sastry, P.S.: Varieties of learning automata: an

overview. IEEE Trans. Syst. Man Cybern. B Cybern. 32(6),
711–722 (2002). https://doi.org/10.1109/TSMCB.2002.1049606

56. Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E.,

Awni Hammouri, V.B., Prasath, S.: Choosing mutation and

crossover ratios for genetic algorithms—a review with a new

dynamic approach. Information 390(10), 1–39 (2019). https://doi.

org/10.3390/info10120390

57. Dantu, R., et al.: Internet2 open science, scholarship and services

exchange (2004)

58. Telecom. colt.net. http://www.colt.net/oracleUCM/groups/public/

documents/digitalasset/colt_011195.pdf

59. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.:

The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9),
1765–1775 (2011)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Mohammad Sadegh Sirjani re-

ceived his B.Sc. degree in

Computer Engineering from

Ferdowsi University of Mash-

had, Iran, in 2024. During his

undergraduate studies, he

worked as a software engineer

at leading technology compa-

nies, gaining practical experi-

ence that complemented his

academic pursuits. This industry

exposure shaped his research

interests, leading him to explore

topics in the Internet of Things

(IoT) and heuristic algorithms

for scheduling. Currently, he is pursuing a Ph.D. in Computer Science

at the University of Texas at San Antonio, where his research focuses

on IoT and Tiny AI, aiming to advance efficient and intelligent sys-

tems for resourceconstrained environments.

  660 Page 34 of 35 Cluster Computing          (2025) 28:660 

123

https://doi.org/10.1109/TNSM.2018.2848105
https://doi.org/10.1109/TNSM.2018.2848105
https://doi.org/10.3390/en14113161
https://doi.org/10.3390/en14113161
https://doi.org/10.3390/s22082992
https://doi.org/10.1016/j.comcom.2017.09.007
https://doi.org/10.1007/s12652-020-02554-2
https://doi.org/10.1007/s12652-020-02554-2
https://doi.org/10.1016/j.comcom.2020.02.053
https://doi.org/10.1016/j.comcom.2020.02.053
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.22075/IJNAA.2022.5789
https://doi.org/10.22075/IJNAA.2022.5789
https://doi.org/10.1109/TITS.2022.3182410
https://doi.org/10.1016/j.comnet.2019.106883
https://doi.org/10.1016/j.ymssp.2022.109930
https://doi.org/10.1016/j.ymssp.2022.109930
https://doi.org/10.1016/j.comnet.2016.03.005
https://doi.org/10.1016/j.comnet.2016.03.005
https://doi.org/10.1016/j.jocs.2017.05.020
https://doi.org/10.1016/j.jocs.2017.05.020
https://doi.org/10.1109/TSMCB.2002.1049606
https://doi.org/10.3390/info10120390
https://doi.org/10.3390/info10120390
http://www.colt.net/oracleUCM/groups/public/documents/digitalasset/colt_011195.pdf
http://www.colt.net/oracleUCM/groups/public/documents/digitalasset/colt_011195.pdf


Ali Maleki is an undergraduate

student in Computer Engineer-

ing at Islamic Azad University,

Shiraz Branch, expected to

graduate in September 2026.

His research interests include

algorithmic approaches in med-

ical sciences, optimization of

reinforcement learning algo-

rithms for resource management

in cloud computing environ-

ments, and applications of cloud

computing in big data

management.

Amir Pakmehr holds a Ph.D. in

Computer Engineering from the

Islamic Azad University, Qaz-

vin Branch (2025), and received

his M.Sc. in Computer Engi-

neering from the Islamic Azad

University, Tabriz Branch

(2014). His research mainly

focuses on Fog Computing, IoT,

task scheduling, and optimiza-

tion algorithms. With a solid

academic background in wire-

less sensor networks and

energy-aware systems, Dr. Pak-

mehr has contributed to several

peer-reviewed journals and conferences indexed by SCI. His recent

work includes research on deep reinforcement learning for task

offloading, energyefficient scheduling, and DDoS detection tech-

niques in IoT networks. Alongside his academic endeavors, he has

translated technical books and actively participated in international

workshops and exhibitions.

Maedeh Abedini Bagha received
her B.Sc., M.Sc., and Ph.D.

degrees in Computer Engineer-

ing (Software) from Islamic

Azad University, Zahedan,

Tabriz, and Urmia, Iran, in

2007, 2013, and 2024, respec-

tively. She is currently an

Assistant Professor at the

Roshdiyeh Higher Education

Institute and the Department of

Computer Engineering, Tabriz

Branch, Islamic Azad Univer-

sity, Iran. Her research interests

include Machine Learning

Optimization Problems, and Metaheuristic Algorithms.

Ali Ghaffari received his BSc,

MSc and Ph.D. degrees in

computer engineering from the

University of Tehran and IAU

(Islamic Azad University),

TEHRAN, IRAN in 1994, 2002

and 2011 respectively. Dr.

Ghaffari has been featured

among the World’s Top 2%

Scientists List in computer sci-

ence, according to a conducted

study by US-based Stanford

University in 2020, 2021, 2023,

and 2024 and Top 1% Scientists

List in computer science,

according to Clarivate analytics in 2022, 2023, and 2024. As an

professor of computer engineering, his research interests are mainly in

the field of software defined network (SDN), Wireless Sensor Net-

works (WSNs), Mobile Ad Hoc Networks (MANETs), Vehicular Ad

Hoc Networks (VANETs), networks security and Quality of Service

(QoS). He has published more than 200 international conference and

reviewed journal papers. He has served as a reviewer for some high-

ranked journal such as IEEE transaction on mobile computing, IEEE/

ACM Transactions on Networking, IEEE Transactions on Network

and Service Management, Applied Soft Computing, Ad Hoc net-

works, Future Generation Computer System (FGCS), Journal of

Ambient Intelligent and Humanized Computing (AIHC) and com-

puter networks.

Ali Asghar Pour Haji Kazem re-

ceived his B.Sc., M.Sc., and

Ph.D. degrees in Computer

Engineering (Software Engi-

neering) from the University of

Isfahan, Shahid Beheshti

University, and Islamic Azad

University (Science and

Research Branch), respectively.

He is currently an Assistant

Professor in the Software Engi-

neering Department at Istinye

University, Istanbul, Türkiye,

and has previously served at the

Tabriz Branch of Islamic Azad

University, Iran. Dr. Pour Haji Kazem has authored and co-authored

over 50 research articles in reputable journals and international con-

ference proceedings. His research interests include Distributed Sys-

tems, Cloud Computing, Data Science, Machine Learning,

Computational Intelligence, Optimization Problems, Evolutionary

Computing, and Database.

Cluster Computing          (2025) 28:660 Page 35 of 35   660 

123


	Controller placement in software-defined networks using reinforcement learning and metaheuristics
	Abstract
	Introduction
	Related works
	Single-objective approaches
	Multi-objectives approaches

	System modeling and proposed method
	System modeling
	End-to-end delay
	Propagation latency
	Controllers load
	Energy usage

	Bedbug-GLA
	Finding number of controllers
	Irregular cellular learning automata (ICLA)
	Developed ICLA (DCLA)
	Using DCLA to find NC

	Controller assignment
	Bedbug meta-heuristic algorithm (BMHA)
	Developed bedbug meta-heuristic algorithm (DBMHA)


	Computational complexity

	Performance evaluation
	Simulation setup
	Weights’ sensitivity analysis
	Energy usage
	Load of controllers
	Adaptation to traffic variability
	Congested controllers
	End-to-end delay
	Scalability evaluation of bedbug-GLA
	The convergence rates

	Conclusion
	Author contributions
	Data availability
	References


